定理
李逵
教学目标:1、理解三角形的内外角平分线定理;
2、会证明三角形的内外角平分线定理;
3、通过对定理的证明,学习几何证明方法和作辅助线的方法;
4、培养逻辑思维能力。
教学重点:1、几何证明中的证法分析;
2、添加辅助线的方法。
教学难点:如何添加有用的辅助线。
教学关键:抓住相似三角形的判定和性质进行教学。
教学方法:“四段式”教学法,即读、议、讲、练。
一、阅读课本,注意问题
1、复习旧知识,回答下列问题
①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。
②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?
③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?
④几何证明中怎样构造有用的相似三角形?
2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。
提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。
a
b
c
d
3、注意下列问题:⑴如图,等腰 中,顶角 的平分线 交底边 于 ,那么,图中出现的相等线段是 , ,即 , 。通过比较得到 。
a
b
c
d
⑵如果上面问题中的 换成任意三角形,即右图的 , 平分 ,交 于 ,那么, 是不是还成立?请同学们用刻度尺量一量线段 、 、 、 的长度,计算 ?, ?,然后再比较 阅读全文