登录

§14.3.2.1 等边三角形(三)

§14.3.2.1  等边三角形(三)
教学过程
一、 复习等腰三角形的判定与性质
二、 新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
 注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本148页的例子;
4.补充:已知如图所示, 在△abc中,  bd是ac边上的中线, db⊥bc于b,
∠abc=120o, 求证: ab=2bc
分析   由已知条件可得∠abd=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是ab,30o角所对的边是与bc相等的线段,问题就得到解决了.
b

        
证明: 过a作ae∥bc交bd的延长线于e
∵db⊥bc(已知)
∴∠aed=90o (两直线平行内错角相等)
在△ade和△cdb中
 
∴△ade≌△cdb(aas)
∴ae=cb(全等三角形的对应边相等)
∵∠abc=120o,db⊥bc(已知)
∴∠abd=30o
在rt△abe中,∠abd=30o
∴ae= ab(在直角三角形中,如果一个锐角等于30o,
那么它所对的直角边等于斜边的一半)
∴bc= ab   即ab=2bc
点评   本题还可过c作ce∥ab
5、训练:如图所示,在等边△abc的边的延长线上取一点e,以ce为边

阅读全文
相关文章更多>>
最新发布文章更多>>
三角形相似的判定 (第3课时)
相似三角形的性质
相似三角形的性质 (第2课时)