十一章 全等三角形复习
一、全等三角形
能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“sss”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“sas”)
角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“asa”)
角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“aas”)
斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“hl”)
4、证明两个三角形全等的基本思路:
二、角的平分线:
1、(性质)角的平分线上的点到角的两边的距离相等.
2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:
(1):要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;
(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;
(4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”
第十二章 轴对称
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4.轴对称的性质
①关于某直线对称的两个图形是