登录

数学教案-提公因式法

教学设计

提公因式法(一)

教学目标 
1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.
2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.
3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.

教学重点及难点
教学重点
因式分解的概念及提公因式法.
教学难点 
正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.
教学过程 设计:
一、复习提问
乘法对加法的分配律.
二、新课
1.新课引入:用类比的方法引入课题.
学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.
在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.
2.因式分解的概念:
请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)
如:m(a+b+c)=ma+mb+mc
2xy(x-2xy+1)=2x2y-4x2y2+2xy
(a+b)(a-b)=a2-b2
(a+b)(m+n)=am+an+bm+bn
(x-5)(2-x)=-x2+7x-10 等等.
再请学生观察它们有什么共同的特点?
特点:左边,整式×整式;右边,是多项式.
可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.
定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
如:因式分解:ma+mb+mc=m(a+b+c).
整式乘法:m(a+b+c)=ma+mb+mc.

阅读全文
相关文章更多>>
最新发布文章更多>>
三角形相似的判定 (第3课时)
相似三角形的性质
相似三角形的性质 (第2课时)