登录

平行线分线段成比例定理 (第二课时)

(第二课时)

一、教学目标

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

5.通过定理的教学,进一步培养学生类比的数学思想.

二、教学设计

观察、猜想、归纳、讲解

三、重点、难点

l.教学重点:是平行线分线段成比例定理和推论及其应用.

2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

【讲解新课】

在黑板上画出图,观察其特点: 与 的交点A在直线 上,根据平行线分线段成比例定理有: ……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

平行于 的边BC的直线DEAB、AC,所得对应线段成比例.

在黑板上画出左图,观察其特点: 与 的交点A在直线 上,同样可得出: (六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

平行于 的边BC的直线DE截边BACA的延长线,所以对应线段成比例.

综上所述,可以得到:

推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

如图, (六个比例式).

此推论是判定三角形相似的基础.

注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知 ,DE是截线,这个推论包含了下图的各种情况.

这个推论不包含下图的情况.

后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

例3  已知:如图, ,求:AE

教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一

阅读全文
相关文章更多>>
最新发布文章更多>>
三角形相似的判定 (第3课时)
相似三角形的性质
相似三角形的性质 (第2课时)