登录

点到直线的距离

教学目标:

  (1)让学生理解点到直线距离公式的推导,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;

  (2)培养学生观察、思考、分析、归纳等数学能力,数形结合、转化(或化归)、等数学思想、特殊与一般的方法以及数学应用意识与能力;

  (3)引导学生用联系与转化的观点看问题,了解和感受探索问题的方式方法,在探索问题的过程中获得成功的体验.

  教学重点:点到直线距离公式及其应用.

  教学难点:发现点到直线距离公式的推导方法.

  教学方法:问题解决法、讨论法.

  教学工具:计算机多媒体、实物投影仪.

  教学过程:

  一、创设情景提出问题

  多媒体显示实际的例子:

某电信局计划年底解决本地区最后一个小区p的电话通信问题.离它最近的只有一条线路通过,要完成这项任务,至少需要多长的电缆?

经过测量,若按照部门内部设计好的坐标图(即以电信局为原点),得知这个小区的坐标为p(-1,5),离它最近线路其方程为2x+y+10=0.

                

  这个实际问题要解决,要转化成什么样的数学问题?学生得出就是求点到直线的距离.教师提出这堂课我们就来学习点到直线的距离,并板书写课题:点到直线的距离.

  二、自主探索推导公式

多媒体显示:已知点p(x0,y0),直线:ax+by+c=0,求点p到直线的距离.怎样求点到直线距离呢?学生思考,做垂线找垂足q,求线段pq的长度.怎样用点的坐标和直线方程求和表示点到直线距离呢?

教师提示在解决问题时先可以考虑特殊情况,再考虑一般情况.学生提出平行于x轴和y轴的特殊情况.学生解决.

        

板书:

如何求?

学生思考回答下列想法:

思路一:过作于点,根据点斜式写出直线方程,由与联立方程组解得点坐标,然后利用两点距离公式求得.

        

教师评价:此方法思路自然.

  教师继续提出问题:

  (1)求线段长度可以构造图形吗? (2)

阅读全文
相关文章更多>>
最新发布文章更多>>
椭圆及其标准方程1
圆的方程
曲线和方程