登录

直线的倾斜角和斜率


教学目标 

(1)了解直线方程的概念.
(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.
(3)理解公式的推导过程,掌握过两点的直线的斜率公式.
(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.
(5)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.


教学建议

1.教材分析

(1)知识结构
本节内容首先根据一次函数与其图像——直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而实现了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分体现了解析几何的思想方法.
(2)重点、难点分析
①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.
②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不容易接受.
2.教法建议
(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程 也有三个阶段
①在教学中首先是创设问题情境,然后通过讨论明确用角来刻画直线的方向,如何定义这个角呢,学生在讨论中逐渐明确倾斜角的概念.
本节的难点是对斜率概念的理解

阅读全文
相关文章更多>>
最新发布文章更多>>
椭圆及其标准方程1
圆的方程
曲线和方程