函数与不等式问题的解题技巧
【命题趋向】
全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照考纲和高考函数试题有这样几个特点:
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现.
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.
5.涌现了一些函数新题型.
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.
函数类试题在试题中所占分值一般为22---35分.
1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题.
2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.
3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.
分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.
【考点透视】
1.了解映射的概念,理解函数的概念.
2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.
4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.
5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.
6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际
阅读全文