数列教案
1、若 为等差数列,且 则 ;
2、若 为等差数列, 当为奇数时, , ( 中间项),
当n为偶数时, 。
3、若 为等差数列,则连续 项的和组成的数列 仍为等差数列。
4、等差数列 中,若 ,则 , 是其前 项之和,有如下性质,
一般地: ,由此式可以推出:
(1)若 ,则 ;
(2)若 则 ;
(3)若 则 ;
(4)若 ,则 。
5、有两个等差数列 、 ,若 ,则 。
6、若 为等差数列, 为公差,则 。
7、、若 、 都是等差数列,公差分别为 、 ,若这两个数列有公共项,则公共项组成的新数列一般仍为等差数列。
8、等差数列 中, (d为公差)。
若公差非零的等差数列 中的三项 构成等比数列,则其公比为: 。
9、等差数列前项和公式 。
10、在等差数列 中,有关 的最值问题常用邻项变号法来求解,分类如下:
(1)当 时,满足 的项数 ,使得 取最大值;
(2)当 时,满足 的项数 ,使得 取最小值;
说明: 存在最大值,只需 , 存在最小值,只需 。
11、若 为等比数列,则连续 项的和组成的数列 仍为等比数列。( )。
12、若 为等比数列,且 则 ;
,
13、若 为等比数列, 、 、 成等差数列,则 、 、 成等比数列,其中 、 、
14、若 为等比数列,则 。
15、若 为等差数列,则 。
16、 ;
;
。
17、两个特殊的裂项: , 。
18、由递推公式求数列通项公式类型与方法归类:
类型(ⅰ) 方法:累加法
累加公式:
类型(ⅱ) 方法:累乘法
累乘公式:
类型(ⅲ)
阅读全文