登录

数学活动“数数看,找规律”教学设计

一、说教材

(一)教学内容

教科书第142页活动3:数数看,找规律。

(二)在教材中的地位

本节内容在由平面图形到立体图形的转化中起桥梁作用。教材在前面介绍了常见的基本几何体和一些简单的平面图形的知识后,安排了这节数学活动课。一方面是丰富学生对图形世界的认识,二是从直观上感知几何体是由面围成的,三是初步培养学生把空间问题转化为平面图形来研究的思维方式。所以这节活动课具有承上启下的作用,即是由平面图形向几何空间转化的桥梁。

(三)教学目标

1.知识目标

通过对正多面体的展开与折叠以及模型制作的活动,发展学生的空间观念,积累数学活动的经验,在看一看、做一做、想一想、数一数的过程中,归纳出正多面体的顶点数、面数、棱数之间的规律,进而会利用经验自制模型,检验规律。

2.能力目标

通过折叠,经历“做数学”和“学数学”的过程,培养学生动手能力,提高动脑能力,在活动中获得空间想象能力及合作交流意识。

3.情感目标

活动过程是老师与学生及学生与学生的交往、互动、共同发展的过程,在参与、观察过程中,培养学生学习数学的兴趣,同时通过展示学生成功折叠的正多面体模型,增强学生的自信心与审美情趣。

另外,引用数学史料,使学生更好地了解问题的背景,学习科学家勤于动手,善于动脑的治学精神,树立勇于攀登科学巅峰的远大理想。

4.教学重点难点

(1)教学重点

利用折叠出的五个正多面体,数出它们的顶点数、面数和棱数,找出规律。

(2)教学难点

如何折叠出正八面体和正十二面体;如何正确地数出正十二面体的顶点数和棱数。

二、说教法

在教学中,倡导学生主动参与、乐于研究和勤于动手,培养学生获得新知识、分析问题和解决问题以及交流与合作的能力,为此主要采用分组合作、师生互动、操作演示、多媒体辅助教学等方法,充分体现出学生是学习的主体,教师是教学的组织者、引导者、合作者。具体程序是:

情境导人一观察与思考一动手折叠一探究规律一知识引伸与拓展

三、说学法

指导学生

阅读全文
相关文章更多>>
最新发布文章更多>>
数学教案-不等式的解集 教学设计方案(二)
数学教案-不等式和它的基本性质 教学设计方案(二)
数学教案-不等式和它的基本性质