登录

4.2 解一元一次方程的算法(三)

4.2  解一元一次方程的算法(三)教学目标1.在具体情景中建立方程模型.2.能准确应用去括号法则解一元一次方程。教学重、难点重点:利用去括号的法则解含括号的一元一次方程。难点:解含多重括号的一元一次方程教学过程一 激情引趣,导入新课1 下面去括号是否正确?(1)2-(3x-5)=2-3x-5,(2) 5x- 3(2x-4)=5x-6x-122下图中马路的旁边栽了几颗树?间隔几段?段数和棵数有什么规律?  下面我们就来看一道与植树有关的问题二 合作交流,探究新知1 问题1现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔5.5米栽一棵,则树苗正好用完.你能算出原有树苗的棵数和这段路的长度吗?(做完后交流做法)2 尝试练习:(1 )解方程: (2) 下面方程的解法对不对?如果不对,请改正。解方程: 解:去括号,得  移项,得 化简,得 方程两边除以 ,得:x= - (3) 解下了方程,并口算检验:    ①(4y+8)+(3y-7)=0 ,                         ② 2(2x-1)-2(4x+3)=7③ 三 应用迁移,巩固提高1 解含有多重括号的方程例1 解方程: 2 实践应用例2 如果代数式8x-9与6-2x的值互为相反数,则x的值为___________例3 如果用c表示摄氏温度(℃),f表示华氏温度(℉),那么c和f之间的关系是“c= (f-32)”已知c=15,求f.

阅读全文
相关文章更多>>
最新发布文章更多>>
数学教案-不等式的解集 教学设计方案(二)
数学教案-不等式和它的基本性质 教学设计方案(二)
数学教案-不等式和它的基本性质