登录

1.6 单项式的乘法

教学目标:

1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;
2.注意培养学生归纳、概括能力,以及运算能力.

教学重点和难点:

准确、迅速地进行单项式的乘法运算.

课堂教学过程设计

一、从学生原有认知结构提出问题
1.下列单项式各是几次单项式?它们的系数各是什么?
 
2.下列代数式中,哪些是单项式?哪些不是?
 
3.利用乘法的交换律、结合律计算6×4×13×25.
4.前面学习了哪三种幂的运算性质?内容是什么?

二、讲授新课

1.引导学生得出单项式的乘法法则
利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:
(1)2x2y•3xy2
=(2×3)(x2•x)(y•y2)
=6x3y3;
(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)
(2)4a2x5•(-3a3bx)
=[4×(-3)](a2•a3)•b•(x5•x)
=-12a5bx6.
(b只在一个单项式中出现,这个字母及其指数照抄)
学生练习,教师巡视,然后由学生总结出单项式的乘法法则:
单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

2.引导学生剖析法则

(1)法则实际分为三点:①系数相乘——有理数的乘法;②相同字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.
(2)不论几个单项式相乘,都可以用这个法则.
(3)单项式相乘的结果仍是单项式.

三、应用举例 变式练习

例1 计算:
(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);
(3)(-3ab)(-a2c)2•6ab(c2)3.
解:(1)(-5a2b3)(-3a)
=[(-5)

阅读全文
相关文章更多>>
最新发布文章更多>>
数学教案-不等式的解集 教学设计方案(二)
数学教案-不等式和它的基本性质 教学设计方案(二)
数学教案-不等式和它的基本性质