登录

第一章 集合与简易逻辑

第一章  集合与简易逻辑一.集合的有关概念1.集合①定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。②表示方法列举法:将集合中的元素一一列举出来,用大括号括起来,如{a,b,c}描述法:将集合中的元素的共同属性表示出来,形式为:p={x∣p(x)}.如: 图示法:用文氏图表示题中不同的集合。③分类:有限集、无限集、空集。④性质 确定性: 必居其一,互异性:不写{1,1,2,3}而是{1,2,3},集合中元素互不相同,无序性:{1,2,3}={3,2,1}2.常用数集  复数集c  实数集r  整数集z  自然数集n  正整数集 (或n+) 有理数集q3.元素与集合的关系: 4.集合与集合的关系:①子集:若对任意 都有 [或对任意 都有 ] 则a是b的子集。         记作:     ②真子集:若 ,且存在 ,则a是b的真子集。           记作: b[或“ ”]   a b,b c  a c③ ④空集:不含任何元素的集合,用 表示,对任何集合a有 ,若 则 a注: 5.子集的个数若 ,则a的子集个数、真子集的个数、非空真子集的个数分别为2n个,2n -1个和2n -2个。二.集合的运算1.有关概念①交集:    ②并集: ③全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,通常用u表示。④补集:      2.常用运算性质及一些重要结论① ② ③   ④

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和