教学目的:1.掌握等差数列前n项和公式及其获取思路. 2.会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题 教学重点:等差数列n项和公式的理解、推导及应 教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题 教学过程: 一、复习引入:首先回忆一下前几节课所学主要内容:1.等差数列的定义: - =d ,(n≥2,n∈n+) 2.等差数列的通项公式: ( 或 =pn+q (p、q是常数)) 3.几种计算公差d的方法:① d= - ② d= ③ d= 4.等差中项: 成等差数列 5.等差数列的性质: m+n=p+q (m, n, p, q ∈n )6.伟大的数学家,天文学家,高斯十岁时计算1+2+…100的小故事, 小高斯的计算方法启发我们下面要研究的求等差数列前n项和的一种很重要的思想方法,— “倒序相加”法。 二、讲解新课: 1.数列的前n项和的定义:数列 中, 称为数列 的前n项和,记为 . 2.等差数列的前 项和公式1: 证明: ① ②①+②: ∵ ∴ 由此得: &nb
阅读全文