登录

下学期 5.4 平面向量的坐标运算1

(第一课时)

一.教学目标 

1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量;

2.掌握平面向量的坐标运算,能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;

3.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.

二.教学重点  理解平面向量的坐标表示,平面向量的坐标运算.

教学难点   对平面向量坐标表示的理解.

三.教学具准备

直尺、投影仪

四.教学过程 

1.设置情境

师:平面内有点 ,点 ,能否用坐标来表示向量 呢?这就是我们今天要学习的平面向量的坐标运算.

(板书课题)平面向量的坐标运算

2.探索研究

(1)师:平面向量的基本定理的内容是什么?什么叫平面向量的基底?

生:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数 、 ,使

我们把不共线的向全 、 叫做这一平面内所有向量的一组基底,这就是平面向全的基本定理.

师:如果在直角坐标系下,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,任作一向量a,由平面向量基本定理知,有且只有一对实数xy使得

我们就把(xy)叫做向量a的(直角)坐标,记作;

 

这就叫做向量的坐标表示

显然i=(1,0)  j=(0,1)  0=(0,0)

 如图(1)所示,以原点O为起点与向量a相等的向量 ,则A点的坐标就是向量a的坐标,反之设 ,则点A的坐标(xy)也就是向量 的坐标.

问题: 1°已知 (x1, y1)   (x2, y2)   求 + , - 的坐标

2°已知 (x, y)和实数λ,   

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和