登录

下学期 4.8 正弦函数、余弦函数的图像和性质2

4.8  正弦函数、余弦函数的图像和性质(第二课时)

(一)教学具准备

直尺,投影仪.

(二)教学目标 

1.掌握 , 的定义域、值域、最值、单调区间.

2.会求含有 、 的三角式的定义域.

(三)教学过程 

1.设置情境

研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

2.探索研究

师:同学们回想一下,研究一个函数常要研究它的哪些性质?

生:定义域、值域,单调性、奇偶性、等等.

师:很好,今天我们就来探索 , 两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)

师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

师:请同学思考以下几个问题:

(1)正弦、余弦函数的定义域是什么?

(2)正弦、余弦函数的值域是什么?

(3)他们最值情况如何?

(4)他们的正负值区间如何分?

(5) 的解集如何?

师生一起归纳得出:

(1)正弦函数、余弦函数的定义域都是 .

(2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性.

(3)取最大值、最小值情况:

正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.

余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.

(4)正负值区间:

( )

(5)零点: ( )

( )

3.例题分析

【例1】求下列函数的定义域、值域:

(1) ; (2) ; (3) .

解:(1) ,

(2)由 ( )

又∵ ,∴

∴定义域为 ( ),值域为 .

(3)由 ( ),又由

∴定义域为 ( ),值域为 .

指出:求值域应注意用到 或 有界性的条件.

【例2】求下列函数的最大值,并求出最大值时 的集合:

(1) , ; (2

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和