登录

含绝对值的不等式


教学目标 

1)掌握 )型的绝对值不等式的解法.

2)掌握 )型的绝对值不等式的解法.

3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;

4)通过将同解变形为不,培养学生化归的思想和转化的能力;

教学重点 型的不等式的解法;

教学难点 利用绝对值的意义分析、解决问题.

教学过程 设计

教师活动

学生活动

设计意图

一、导入  新课

【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

【概括】

 

口答

绝对值的概念是解 )型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.

二、新课

【导入  】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来.

【讲述】求绝对值等于2的数可以用方程 来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2

【提问】如何解绝对值方程

【设问】解绝对值不等式 ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式 的解集就是表示数轴上到原点的距离小于2的点的集合.

【设问】解绝对值不等式 ,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?

【质疑】 的解集有几部分?为什么 也是它的解集?

【讲述】 这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以 解集的一部分.在解 时容易出现只求出 这部分解集,而丢掉 这部解集的错误.

【练习】解下列不等式:

1

2

【设问】如果在 中的 ,也就是 怎样解?

【点拨】可以把 看成一个整体,也就是把 看成 ,按照 的解法来解.

所以

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和