教学目标
1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项.
(1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.
(2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前几项写出该的一个通项公式.
(3)已知一个的递推公式及前若干项,便确定了,能用代入法写出的前几项.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯.
教学建议
(1)为激发学生学习的兴趣,体会知识在实际生活中的作用,可由实际问题引入,从中抽象出要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等.
(2)中蕴含的函数思想是研究的指导思想,应及早引导学生发现与函数的关系.在教学中强调的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的,次序不同则就是不同的.函数表示法有列表法、图象法、解析式法,类似地,就有列举法、图示法、通项公式法.由于的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而就有其特殊的表示法——递推公式法.
(3)由的通项公式写出的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.
(4)由的前几项写出的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该的下一项或下几项的值,以便寻求项与项数的关系.
阅读全文