第二课时
教学目标
1.进一步熟练掌握比较法证明不等式;
2.了解作商比较法证明不等式;
3.提高学生解题时应变能力.
教学重点 比较法的应用
教学难点 常见解题技巧
教学方法 启发引导式
教学活动
(一)导入 新课
(教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.
(学生活动)思考问题,回答.
[字幕]1.比较法证明不等式的步骤是怎样的?
2.比较法证明不等式的步骤中,依据、手段、目的各是什么?
3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?
[点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)
设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)提出问题,引导学生研究解决问题,并点评.
(学生活动)尝试解决问题.
[问题]
1.化简
2.比较 与 ( )的大小.
(学生解答问题)
[点评]
①问题1,我们采用了因式分解的方法进行简化.
②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.
设计意图:启发学生研究问题,建立新知,形成新的知识体系.
【例题示范,学会应用】
(教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.
(学生活动)分析,研究问题.
[字幕]例题3 已知a,b是正数,且 ,求证
[分析]依题目特点,作差后重新组项,采用因式分解来变形.
证明:(见课本)
[点评]因式分解也是对差式变形的一种常用方法.此例将差
阅读全文