登录

函数、方程及不等式的关系复习提纲

高考要求
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法
重难点归纳
1 二次函数的基本性质
(1)二次函数的三种表示法
y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n
(2)当a>0,f(x)在区间[p,q]上的最大值m,最小值m,令x0=  (p+q)
若- <<i>p,则f(p)=m,f(q)=m;
若p≤- <<i>x0,则f(- )=m,f(q)=m;
若x0≤- <<i>q,则f(p)=m,f(- )=m;
若- ≥q,则f(p)=m,f(q)=m
2 二次方程f(x)=ax2+bx+c=0的实根分布及条件
(1)方程f(x)=0的两根中一根比r大,另一根比r小 a·f(r)<0;
(2)二次方程f(x)=0的两根都大于r 
(3)二次方程f(x)=0在区间(p,q)内有两根
(4)二次方程f(x)=0在区间(p,q)内只有一根 f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立
(5)方程f(x)=0两根的一根大于p,另一根小于q(p<<i>q)
3 二次不等式转化策略
(1)二次不等式f(x)=ax2+bx+c≤0的解集是
(-∞,α )∪[β,+∞ a<0且f(α)=f(β)=0;
(2)当a>0时,f(α)<<i>f(β)  |α+ |<|β+ |,
当a<0时,f(α)<<i>f(β) |α+ |>|

阅读全文
相关文章更多>>
最新发布文章更多>>
组合
排列
排列、组合、二项式定理-基本原理