高三上学期《一元二次不等式及其解法》导学案
一、教学内容解析
一元二次不等式的解法是高中数学最重要的内容之一,在高中数学中起着广泛的应用工具作用,蕴藏着重要的数形结合思想,是代数、三角、解析几何交汇综合的部分,在高中数学中具有举足轻重的地位。
教科书中对一元二次不等式的解法,没有介绍较繁琐的纯代数方法,而是采取简洁明了的数形结合的方法,从具体到抽象,从特殊到一般,用二次函数的图象来研究一元二次不等式的解法。教学中,利用几何画板的动态演示功能,引导学生结合二次函数的图象探究一元二次不等式、一元二次方程、二次函数“三个二次”间的联系,归纳总结出一元二次不等式的求解过程。通过对一元二次不等式解集的探究过程,渗透函数与方程、数形结合、分类讨论等重要的数学思想。
一元二次不等式的解法是程序性较强的内容,探究中应注意对“特例”的处理,让学生注意对“特殊情况”的处理,才能让学习的内容更加完整。
因此,本节课教学的重点是围绕一元二次不等式的解法,通过图象了解一元二次不等式与相应函数、方程的联系,突出体现数形结合的思想。
二、教学目标解析
1. 通过对一元二次不等式解法的探究,让学生了解一元二次不等式与相应函数、方程的联系。
2. 掌握一元二次不等式的求解步骤,尤其是对“特例”的处理。
3. 通过图象解法渗透数形结合、分类化归等重要的数学思想,培养学生动手能力,观察分析能力、抽象概括能力、归纳总结等系统的逻辑思维能力,培养学生简约直观的思维方法和良好的思维品质。
三、学生学情分析
学生已有的认知基础是,学生已经学习了二次函数、一元二次方程、函数的零点等有关知识,为本节课的学习打下了基础。
学生根据具体的二次函数的图象得对应一元二次不等式的解集时问题不大,学生可能存在的困难:(1)二次函数是初中学习的难点,许多学生对二次函数的知识掌握欠缺,对本节课的顺利开展有一定的影响;(2)从特殊的一元二次不等式的求解到一般的一元二次不等式的求解,学生全面考虑不同情况下
阅读全文