一、课题:3.4.2 余角和补角
二、学习目标:
㈠知识与技能:
1.在具体情境中了解余角和补角,懂得等角或同角的补角相等、等角或同角的余角相等;
2.并能运用这些性质解决一些简单的实际问题。
㈡过程与方法:
经历观察、推理、交流等活动,发展学生的图形观念,培养学生的推理能力和有条理的表达能力。
㈢情感态度与价值观:
1.体验数学知识来源于生活,又能运用于生活,解决生活中的一些实际问题;
2.使学生体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.
三、教学重难点:
重点:互为余角、互为补角的概念及有关余角、补角的性质;
难点:有关余角和有关补角性质的推导和运用。
四、教学方法:演示法、观察法、小组合作与交流讨论法。
五、课时与课型:
课时:第一课时;课型:新授课。
六、教学准备:两副三角板、投影片若干张。
七、教学设计:
㈠提出问题----从生活走向数学(投影)
在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时此刻∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°,如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。
㈡引入新课
要想正确解决这个问题,需要学习本节课的知识.
(板书课题)3.4.2余角和补角
㈢探究新知
1.互为余角、互为补角的定义
⑴教师用三角板演示两个角的和是90°及两个角的和是180°的情况;
⑵请你自己画出两个角的和是90°及两个角的和是180°的图形。
(教师问:)通过刚才的演示和画图,你能叙述一下具有什么关系的两个角叫互为余角和互为补角吗?
学生活动:同桌相互讨论,互相纠正和补充,然后找学生口述.
【教法与学法说明】通过学生亲自动手画图,观察老师的演示,对互为余角、互为补角概念的理解,应该说已经有所理解.教师不需完全包办代替,让学生自己总结归纳,可以训练其归纳
阅读全文