登录

数学教案-空间里的平行关系

教学建议

一、知识结构

在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念.

二、重点、难点分析

能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义.

1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系.

 

2.例如:在图中长方体的棱AA与面ABCD垂直,面AABB与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:

(1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直.

(2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直.

正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面ABCD的位置关系,把棱AB向两方延长,面ABCD向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DDCC是互相平行的,棱AA与面BBCC、与面DDCC也是互相平行的.

再看面ABCD与ABCD,这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AABB与DDCC也是互相平行的.

3.直线与平面、平面与平面平行的判定

(1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。(直线与平面平行的判定)

(2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。(空间里平

阅读全文
相关文章更多>>
最新发布文章更多>>
数学教案-不等式的解集 教学设计方案(二)
数学教案-不等式和它的基本性质 教学设计方案(二)
数学教案-不等式和它的基本性质