登录

两圆的公切线(二)

教学目标:1、使学生学会两圆内公切线长的求法.2.使学生会求出公切线与连心线的夹角或公切线的夹角.2、使学生在学会求两圆内公切线长的过程中,探索规律,培养学生的总结、归纳能力.3、培养学生会根据图形分析问题,培养学生的数形结合能力.教学重点: 使学生进一步掌握两圆公切线等有关概念,会求两圆内公切线长及切线夹角.教学难点:两圆内公切线和内公切线长容易搞混.教学过程:一、新课引入:上一节我们学会了求两圆的外公切线长,这一节我们将学习两圆内公切线长的求法及两圆公切线夹角的求法.实际上,我们首先要清楚,什么样的两圆的位置关系存在两圆内公切线?有几条?什么样的两圆位置关系有内公切线长?请同学们打开练习本,动手画一画,结合图形,考虑上面的问题.学生动手画图,教师巡视,当所有学生都画完图后,教师打开计算机或幻灯作演示,演示过程由学生回答上述三个问题,并认定只有两圆外离时,存在内公切线长.二、新课讲解:有了上一节求两圆外公切线长的基础,学生不难想到求两圆的内公切线长也要在一个直角三角形中完成,只要稍加提示,学生便会作出直角三角形,同时教师要提醒学生注意两种公切线长的求法中,三角形的边有所不同.例2  如图7-106,p.142已知⊙o1、⊙o2的半径分别为4cm和2cm,圆心距为10cm,ab是⊙o1、⊙o2的内公切线,切点分别为a、b.

求:公切线的长ab.分析:仿照上节的辅助线方法作辅助线,我们会发现,不论从o1或o2向另一条半径作垂线,垂足都落在半径的延长线上,因此o2c是两圆半径之和.例题解法参照教材p.142例2.结论:由于圆是轴对称图形,1.两圆的两条外公切线长相等,两条内公切线长相等.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在连心线上.

练习一,如图7-107,已知⊙o1、⊙o2的半径分别为1.5cm和2.5cm,o1o2=6cm.求内公切线的长

阅读全文
相关文章更多>>
最新发布文章更多>>
不等式复习课
§1.8完全平方公式(2)
坐标轴的平移 —— 初中数学第五册教案