教学建议
1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等.
2.重点、难点分析
(1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础.
(2) 正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点.
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当 确定时,包含 的直角三角形有无穷多个,但它们彼此相似:
∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号.
应当注意:单独写出三角函数的符号 或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如 ),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如 ).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.
4. 我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且
阅读全文