1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的
外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标 :
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程 设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等
阅读全文