登录

上学期 2.7 对数

对数的运算法则

教学目标 

1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.

2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.

3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.

教学重点,难点

重点是对数的运算法则及推导和应用

难点是法则的探究与证明.

教学方法

引导发现法

教学用具

投影仪

教学过程 

一.     引入新课   

我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.

如果看到 这个式子会有何联想?

由学生回答(1) (2)  (3)   (4)

也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.

二.对数的运算法则(板书)

对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.

由学生回答后教师可用投影仪打出让学生看:

然后直接提出课题:若 是否成立?

   由学生讨论并举出实例说明其不成立(如可以举 ),教师在肯定结论的正确性的同时再提出

可提示学生利用刚才的反例,把 5改写成 应为 ,而32=2 ,还可以让学生再找几个例子, .之后让学生大胆说出发现有什么规律?

由学生回答应有 成立.

现在它只是一个猜想,要保证其对任意 都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?

学生经过思考后找出可以利用对数概念,性质及与指数的关

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和