4.10 正切函数的图象和性质
第二课时
(一)教学具准备
投影仪
(二)教学目标
运用正切函数图像及性质解决问题.
(三)教学过程
1.设置情境
本节课,我们将综合应用正切函数的性质,讨论泛正切函数的性质.
2.探索研究
(1)复习引入
师:上节课我们学习了正切函数的作图及性质,下面请同学们复述一下正切函数 的主要性质
生:正切函数 ,定义域为 ;值域为 ;周期为 ;单调递增区间 , .
(2)例题分析
【例1】判断下列函数的奇偶性:
(1) ; (2) ;
分析:根据函数的奇偶性定义及负角的诱导公式进行判断.
解:(1)∵ 的定义域为 关于原点对称.
∴ 为偶函数
(2)∵ 的定义域为 关于原点对称,且 且 ,
∴ 即不是奇函数又不是偶函数.
说明:函数具有奇、偶性的必要条件之一是定义域关于原点对称,故难证 或 成立之前,要先判断定义域是否关于原点对称.
【例2】求下列函数的单调区间:
(1) ; (2) .
分析:利用复合函数的单调性求解.
解:(1)令 ,则
∵ 为增函数, 在 , 上单调递增,
∴ 在 ,即 上单调递增.
(2)令 ,则
∵ 为减函数, 在 上单调递增,
∴ 在 上单调递减,即 在 上单调递减.
【例3】求下列函数的周期:
(1) (2) .
分析:利用周期函数定义及正切函数最小正周期为 来解.
解:(1)
∴周期
(2)
∴周期
师:从上面两例,你能得到函数 的周期吗?
生:周期
【例4】有两个函数 , (其中 ),已知它们的周期之和为 ,且 , ,求 、 、 的值.
解:∵ 的周期为 , 的周期为 ,由已知 得
∴函数式为 , ,由已知,得方程组
即 解得
∴ , ,
[参考例题]求函数 的定义域.
解:所求自变量 必须满足
阅读全文