登录

下学期 4.8 正弦函数、余弦函数的图像和性质3

4.8  正弦函数、余弦函数的图像和性质(第三课时)

(一)教学具准备

直尺、投影仪.

(二)教学目标 

1.理解 , 的周期性概念,会求周期.

2.初步掌握用定义证明 的周期为 的一般格式.

(三)教学过程 

1.设置情境

自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角 的终边每转一周又会与原来的位置重合,故 , 的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念——函数的周期性(板书课题)

2.探索研究

(1)周期函数的定义

引导学生观察下列图表及正弦曲线

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

1

 

0

 

-1

 

0

 

1

 

0

 

-1

 

0

正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.

联想诱导公式 ,若令 则 ,由这个例子,我们可以归纳出周期函数的定义:

对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,那么函数 叫做周期函数,非零常数 叫做这个函数的周期.

如 , ,…及 , …都是正弦函数的周期.

注意:周期函数定义中 有两点须重视,一是 是常数且不为零二是等式必须对定义域中的每一个值时都成立

师:请同学们思考下列问题:①对于函数 , 有 能否说 是正弦函数 的周期.

生:不能说 是正弦函数 的周期,这个等式虽成立,但不是对定义域的每一个值都使等式 成立,所以不符合周期函数的定义.

② 是周期函数吗?为什么

生:若是周期函数,则有非零常数 ,使 ,即 ,化简得 ,∴

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和