登录

第一册已知三角函数值求角

【教学课题】: 已知三角函数值求角

【教学目标 】: 了解反三角函数的定义,掌握用反三角函数值表示给定区间上的角

【教学重点】: 掌握用反三角函数值表示给定区间上的角

【教学难点 】: 反三角函数的定义

【教学过程 】:

一.  问题的提出:

在我们的学习中常遇到知三角函数值求角的情况,如果是特殊值,我们可以立即求出所有的角,如果不是特殊值( ),我们如何表示 呢?相当于 中如何用 来表示 ,这是一个反解 的过程,由此想到求反函数。但三角函数由于有周期性,它们不存在反函数,这就要求我们把它们的定义域缩小,并且这个区间满足:

1)包含锐角;(2)具有单调性;(3)能取得三角函数值域上的所有值。

显然对 ,这样的区间是 ;对 ,这样的区间是 ;对 ,这样的区间是

二.新课的引入:

1.反正弦定义:

反正弦函数:函数 的反函数叫做反正弦函数,记作: .

对于 注意:

1) (相当于原来函数的值域);

2) (相当于原来函数的定义域);

3)

即: 相当于 内的一个角,这个角的正弦值为

反正弦:符合条件 )的角 ,叫做实数 的反正弦,记作: 。其中

例如:

由此可见:书上的反正弦与反正弦函数是一致的,当然理解了反正弦函数,能使大家更加系统地掌握这部分知识。

2.反余弦定义:

反余弦函数:函数 的反函数叫做反余弦函数,记作: .

对于 注意:

1) (相当于原来函数的值域);

2) (相当于原来函数的定义域);

3)

即: 相当于 内的一个角,这个角的余弦值为

反余弦:符合条件 )的角 ,叫做实数 的反正弦,记作: 。其中

例如: ,由于 ,故 为负值时, 表示的是钝角

3.反正切定义:

反正切函数:函数 的反函数叫做反正弦函数,记作: .

对于 注意:

1) (相当于原来函数的值域);

2) (相当于原来函数的定义

阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和