登录

不等式的解法举例


教学目标 


(1)能熟练运用不等式的基本性质来解不等式;

(2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法;

(3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解;

(4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想;

(5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.


教学建议

一、知识结构

本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为:
  ;

;

;

 

二、重点、难点分析

本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式 的求解.这个不等式其实是一个不等式组的简化形式,当 为一元一次式时,可直接解这个不等式组,但当 为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集.

三、教学建议

(1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学

阅读全文
相关文章更多>>
最新发布文章更多>>
椭圆及其标准方程1
圆的方程
曲线和方程