【教学过程】
一、感受并认识因数和倍数
1、拼长方形导入
(课件演示12个小正方形)
这里有12 个大小完全一样的小正方形,请你用它们摆出一个长方形,行吗?提出要求:能想象的就想象着在脑子里摆一下,不能想象的就在本子上画一画。
2、谁能用一个乘法算式来表示你的摆法?(学生回答)
3、根据学生回答,提问:请大家想象一下他可能是怎样摆的?还可能是怎么摆的?
4、还可以怎么摆?同样用一道乘法算式表示出来。(学生回答)
他有可能是怎样摆的?能想象出他的摆法吗?
(依次让学生回答,教师课件演示,并在屏幕上显示这三种摆法)
5、讲述:通过刚才的学习,我们发现,用12个同样的小正方形,可以摆出三种不同的长方形,由此,我们还得出三道不一样的乘法算式。以3×4=12为例,3×4=12,从数学的角度看,我们还可以说,3是12的因数,4也是12的因数。倒过来,我们还可以说,12是3的倍数,12也是4的倍数。这就是我们今天要研究的“因数和倍数”。(板书:因数和倍数)
6、结合另外两道乘法算式,你能分别说一说谁是谁的因数,谁是谁的倍数吗?
(请同座两个学生相互说一说。)
7、说明:为了研究的方便,在研究因数和倍数时,我们所说的数专指不是零的自然数。
[设计意图:“因数与倍数”这节内容,传统教材是按数学知识的逻辑系统安排的,在除法和整除的基础上,由整除直接演绎推理出来的。这种概念的揭示从抽象到抽象,没有学生经历的过程,学生获得的概念是刻板的、冰冷的。而本环节设计旨在让学生借助表象进行操作和想像活动,自主体验数与形的结合以及其中的“因倍关系”,进而生成因数和倍数的意义。这种意义的建构是基于学生原有经验之上的,是学生自主操作、积极思考的结果。]
二、探索找一个数的倍数的方法
1、从刚才交流的过程中,我们知道12是3的倍数,那 3的倍数是不是