登录

几类不同增长的函数模型(2课时)

教学要求:①结合实例体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义.
②借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
③恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.
④收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.
教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
教学难点:怎样选择数学模型分析解决实际问题.
教学过程:
一、新课引入:(国际象棋棋盘的奖赏→教科书第三章的章头图:澳大利亚兔子数“爆炸”)
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到1XX年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
二、讲授新课:
1、例题讲解:
① 例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
② 探究:在本例中涉及哪些数量关系?如何用函数描述这些数量关系?→师生共同分析解答
探究:根据例1的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?
借助计算器或计算机 阅读全文
相关文章更多>>
最新发布文章更多>>
等比数列的前n项和
等比数列
等差数列的前n项和