教学目的:1.掌握二倍角的正弦、余弦、正切公式;半角公式和万能公式的推导方法.2.能用上述公式进行简单的求值、化简、恒等证明.教学重点:1.二倍角公式的推导;2.二倍角公式的简单应用.教学难点:理解倍角公式,用单角的三角函数表示二倍角的三角函数.教学过程:一、复习引…
教学目的:1.掌握等比数列的定义. 2.理解等比数列的通项公式及推导; 理解等比中项概念. 教学重点:等比数列的定义及通项公式 教学难点:灵活应用定义式及通项公式解决相关问题 教学过程: 一、复习引入:1.等差数列的定义: - =d ,(n≥2,n∈n*) 2.等差数列的通项公式: 3.…
教学目的:三角函数图象和性质的综合应用 教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 θ是三角形的一个内角,且关于x 的函数f(x)=sin(x+θ)+cos(x-θ)是偶函数,求θ的值.例2 已知 ,试确定函数的奇偶性、单调性.例3 (1)若函数f(x)(x∈r)的图象关于直线x=a与x=…
教学目的:1.灵活应用等比数列的定义及通项公式. 2.熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法。 教学重点:等比中项的应用及等比数列性质的应用. 教学难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题 教学过程: 一、复习:等比数列的定义、通…
教学目的:三角函数图象和性质的综合应用教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 若 ,讨论函数 的单调性;例2已知δabc三内角a,b,c成等差数列,( a>b>c)且tana+tanc=3+ ,试求出角a、b、c的大小。例3 已知函数 .(1) 求它的定义域和值域;(2) 指…
教学目的:证明积化和差公式及和差化和公式, .进一步熟悉有关技巧,继续提高学生综合应用能力。教学重点:积化和差、和差化积公式的推导和应用.教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 一、 复习引入:两角和与差的正弦、余弦公式: 二、讲解新课:…
教学目的:1.理解振幅、周期、相位的定义;2.会用五点法画出函数y=asinx、y=asinωx和 的图象,明确a、ω与φ对函数图象的影响作用;并会由y=asinx的图象得出y=asinx`y=asinωx和 的图象。教学重点:熟练地对y=sinx进行振幅、周期和相位变换.教学难点:理解振幅变换、周期变换和相…
教学目的:要求学生能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力教学重点:二倍角公式的应用教学难点:灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式教学过程:一、复习引入:1.二倍角公式; 2.半角公式; 3.万能公式; 4.积化和…
教学目的:三角函数图象和性质的综合应用 教学重点、难点:三角函数图象和性质的综合应用.一、例题: 例1 (1)已知 ,且 是第一象限角,则 的集合为( ) a. b. c. d. (2)函数 的最大值与最小值依次分别为 a. b. c. d. (3)在锐角 中,下列结论一定成立的是( ) a. …
教学目的:要求学生能较熟练地运用公式进行化简、求值、证明,会求三角函数的最值问题.教学重点:三角函数的最值教学难点:三角函数的最值教学过程:一、复习引入:1.二倍角公式; 2.半角公式; 3.万能公式; 4.积化和差; 5.和差化积二、讲解范例:例1如图,有一块以点o为圆心的半…
第三课时(2.1,2.2)教学目的:1.初步掌握分段函数与简单的复合函数,会求它们的解析式,定义域,值域. 2.会画函数的图象,掌握数形结合思想,分类讨论思想.重点难点:分段函数的概念及其图象的画法.教学过程:一、 复习 函数的概念,函数的表示法二、 例题例1. 已知 . 求f(f(f(-1…
教学目的:1.会用“五点法”画y=asin(ωx+ )的图象;2.会用图象变换的方法画y=asin(ωx+ )的图象;3.会求一些函数的振幅、周期、最值等.教学重点:1.“五点法”画y=asin(ωx+ )的图象;2.图象变换过程的理解;3.一些相关概念.教学难点:多种变换的顺序一、复习引入:1.振幅…